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High-throughput Computing

e High-throughput is:

o When the workload is comprised of multiple tasks.

o Workload of a single application or a single workflow or multiple workflows

as part of a computational campaign

o Typically characterized by the number of tasks executed
e High-throughput computing can also have:

o Temporal dimension (e.g., minimise the time to execute tasks)

o Concurrency dimension (e.g., maximise the number of tasks executed)
e High-throughput computing is not:

o Confined to single core (single node) tasks

o Only embarrassingly parallel set of tasks



High-throughput Computing

e Parameters that need to be understood:

N, = Number of tasks

N = Number of resources

S, = Size of each task (#cores)

t. = Duration of each task

(modulo performance of resource)

e N, =Num. of jobs (land system scheduler)
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Example of D-HTC of HPC tasks

Developed algorithm to exploit

distributed task-level parallelism.

2005-09: Tried running O(1000)
simulations on many
supercomputers. Did not work!
Many reasons!

Reverted running parallel

simulations, sequentially on
single resources.

Importance of MODELS of
EXECUTION, i.e., reason which
tasks go where and when?
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Convergence

e Parameters that need to be understood:
N.. = Number of tasks

o

T
° NR = Number of resources

e S. = Size of each task (#cores)
° tT = Duration of each task

(modulo performance of resource)
e N, =Number of jobs (hit system scheduler)
e Convergence due to change of platform:
o N> 1,8.=1
e —N,=1(HPC),S;=1 ,
o D-HTC to HTC of HPC tasks (HT-HPC).
o Change in the number of N

T

HPC

D-HTC




Abstractions and Models of Adaptive Execution on

Dynamical Resources




HTC: Requires Support at Multiple Levels

Supporting high-throughput
computing requires abstraction and
models at multiple levels

Four Layers:

o L4: Application

o L3: Workload Management (WLMS)
o L2: Task Run-time (TRS)

o L1: Resource Access Layer

For L2: we discuss Pilot abstraction that
has proven fundamental for HTC and
show its generalization to HPC.
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Pilot-Abstraction (P* Model)

e “.. a scheduling overlay which Aqplcation_ Pt Systom
i ; e = | Interface (GUI, CLI, APl |
generalizes the reoccurring concept of WoricosdTask
Pilot Workload
utilizing a placeholder as a container e
for compute tasks” L
Container (Job, VM) | [Multi-lavel schaduling)
e Decouples workload from resource |
management Pt ¢
° E_n_ables fine-grained “slicing and ﬁ e T S
dicing” of resources o EartyLate binding
(cora, memary) |

e Tighter temporal control, advantages

of application-level scheduling e  “P*: A Model of Pilot-Abstractions”, 8th IEEE

] . . International Conference on e-Science (2012)
e Build hlgher-level frameworks without e A Comprehensive Perspective on Pilot-Jobs

explicit resource management http://arxiv.org/abs/1508.04180 (2015) 1


http://arxiv.org/abs/1508.04180
http://arxiv.org/abs/1508.04180

AIMES Execution Model

e Is there an execution model for dynamically
federated heterogeneous resources that works
independent of type of infrastructural dynamism
and heterogeneity?

e AIMES Model of Execution:

o Importance of dynamic integration of
workload and resource information.

o Execution strategy: Temporally ordered set
of decisions that need to be made to execute
a given workload.

e Conceptual models will — better implementation
o RADICAL-WLMS (implementing AIMES
model and Pilots) supports uniform

execution models over XSEDE and OSG!

>
Workload B
Description )
1 g
A4 Execution Manager
Workload-API h L E o St ‘
3 P Execution Strategy >
% 4 e
12b y 2
: Pilot g
Resource )
Information ¢ 5 3
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,4 S5 Resource
I 2a \%a T~ g? - Access Layer
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]
[} By)
L &
o
OSG TITAN XSEDE 5
&
Schematic of RADICAL-WLMS

(implementation of AIMES model) approach to
workload-resource integration: Evaluate
workload requirements & resource capabilities,
derive an execution strategy, and enact.



Distributed Cyberinfrastructure: XSEDE

XSEDE - HPC

- ~10 supercomputers: ~15 PFLOP

- ~10 storage facilities: ~100 PByte

- shared allocation process & user support

- tailored toward grand challenge applications (HPC)

ADVANCING XSEDE @ 100G
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Distributed CyberInfrastructure: OSG

—— = OSG Connect/XSEDE-vcluster - HTC
Zos - ~100 sites, ~40,000 cores, ~1 PB (2012)

FAI
ISYLORNELLBNL

e - exact composition very dynamic
\ T — s - only single core machines, loosely coupled

- tailored towards high throughput (HTC)
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ATLAS: PanDA WMS and HPC Resources Adoption
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Workflow Management on Titan:

Next Generation Workflow Management for High Energy Physics :
e — < —— | e .




Workflow Management on Titan: £
Next Generation Workflow Management for High Energy Ph
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LHC Upgrade Timeline

W update - Decarmier H14

2008 LHC startup, Vs 900 GeV
2010

201 Vs=7+8 TeV, L~6x10"cm™s", bunch spacing 50ns Run 1
2012 NN ~25 fby’

2013

ot LS Go to design energy, nominal luminosity - Phase 0

i Vs=13~14 TeV, L~1x10%cm?s", bunch spacing 25ns Run 2
2017
| ~75-100 b
2018 e

- Injector + LHC Phase | upgrade to ultimate design luminosity

aad V=14 TeV, L~2x10*cm™s", bunch spacing 25ns
2022

2023
— HL-LHC Phase |l upgrade: Interaction Region, crab cavities?

2025
i . Vs=14 TeV, L~5x10cm?s", luminosity levelling

In 10 years, increase by factor 10 the LHC luminosity
—> More complex events
- More Computing Capacity

A new detector
: \

L

N Nl
. ] :;_._—_;a . ‘- ’ ;.- \ )

.8- tracking, calorimeters




LHC Upgrade Timeline

# upet - Dacernber 2033
2008 LHC startup, s 900 GeV
2010
2011 Ve=748 TeV, L-6x10¥cm?s", bunch spacing 50ns Run 1
2012 ~25 f
2013
ik LS1 Go to design energy, nominal luminosity - Phase 0

2015 Ru n3
il Vs=13~14 TeV, L~1x10*¢m? 2028 20&2‘2]_.1
Run?2 =

— Injector + LH™ —umate design luminosity
=1 ; 2015 - 2018

2021 g «X10*cm?s’, bunch spacing 25ns

22 Runl

2023 .

sozs P 2699—#5 7233 upgrade: Interaction Region, crab cavities?

2025
ol {‘ Vs=14 TeV, L~5x10*cm3s", luminosity levelling

In 10 years, increase by factor 10 the LHC luminosity

> More complex events

- More Computing Capacity




Production and Distributed Analysis (PanDA)

ATLAS Regional User Distributed

Produyction Production Submissions Analysis o 6 ma i N Su bsyste ms.:
JEDI \zo'\A VI K e JEDI DB PanDA Sewer (Run 1 )

O
mmee o PanDA Pilot (Run 1)
#9 Ol o JEDI (Run 2)
— O @ o AutoPyFactory (Run 1)
ON 2O e () o PanDA Monitoring (Run 1)
O

[

™| Data Service Brokerage Job Dispatcher Eve nt S e Ni Ce R U n 2
e | [ e ]| o] . ( )

|0 e Developed for
Tt | [ | W ' o HEP workloads and workflows
|

o HTC on Grid infrastructures

| Log Server || Batch Status H Scheduler

T ] Task-based and job-based execution
Ly] 8 Edge LSDDM

—— | | HTTP Proxy | m Od e

Storage Eleme;

Compute Element
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PanDA on Titan

ATLAS MC Workflow - Detector Simulation e Cannot dep|0y PanDA Pilot on
BNL Data Center JEDI PanDA Server < Titan’s Worker nodes (WN)
T“a" | e PanDA Brokers on Titan’s DTN
@ ——— e MPI scripts wrap jobs’ payload
1 Mover RunJobTitan GetBackfill GetJob Y AthenaMP on read_only NFS
) ; (\;) (%) shared between DTN and WN
PBS Batch Moab
@_' B System | | Scheduler el e Events on OLCF Lustre FS
Worker Node o m /hVorker Node Worker Node
| MPI Script | {7 ) \\6
\N-/ + + ]
-| AthenaMP | —| AthenaMP | H  AthenaMP | -| AthenaMP |
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ATLAS simulation time worldwide: February 2017

Wall Clock consumption All jobs in seconds 4(Sum 624,038,348,917)

« ATLAS Detector Simulation Rest - 49.84%
integrated with Titan (OLCF)

* Titan has already contributed a o e E
large fraction of computing
resources for MC simulations

— Titan contributed 4.4% of total
simulation time in February 2017.

|| Rest - 49.84% (311,014,674,359)

B CERN-P1_DYNAMIC_MCORE_LOWMEM - 5.02% (31,332,860,045)
[WORNL Titan MCORE - 4.39% (27,306,161,504)

M BNL | F‘RDD MCORE - 4.26% {26.560,125,032)

[ CERN-F1_DYNAMIC_MCORE - 3.23% (20,185,049,416) DAGLTE MCORE - 2.16% (13,450,195,231)

B MWT2 MCORE - 2.07% (12,914,398,584) £ BOINE_MCDHE - 1.90% (11,842,949,430)

M BU A'I'LAS Tier2 MCORE - 1.66% (10,374,456,280) [ CERN-PROD SHORT - 1.66% (10,365,047 ,8098)

B CERN- FHDD TO “AMCORE - 1.65% (10,324,383,732) B FZK-LCGZ_MCORE - 1.65% (10,281,409,453)

B MWT2 5.6 - 1.62% (10,127,987,628) M IN2P3-CC_MCORE - 1.57% (9,785,324,136)

M RAL-LCG? _MCORE - 1.43% (8,938,111.360) B SLACKRD MPS - 1.36% (8,462,468,468)

| DEST—HH_H CORE - 1.35% (8,399,710,720) B TRIUMF_MCORE_LOMEM - 1.34% (8,333,559,388)

TTIAAS MCNRF C 1 1G04 T 440 230 ARAY nlus T2 mnra



Understanding Backfill Slot Availability
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Evolution of PanDA Deployment on Titan

Static binding and sizing of tasks and jobs:

e Detector simulations of production ATLAS MC workflow
e 100 events per job (as opposed to 1000 for jobs on grid resources)
e 1job; 1 WN; 16 AthenaMP; 100 events.

Benefits of implementing the pilot abstraction on Titan:

e Efficiency:

o No assumption required about the number of events per simulation.

o Jobs can be streamed to Titan when available.

o Better walltime utilization via multiple execution generations on pilot(s).
e \Workload heterogeneity:

o No need of tailoring MPI scripts to the specifics of each type of workload.
e Resource heterogeneity:

o No need of implementing tailored support for each HPC machine flavour.



PaNDA and Next Generation Executor (NGE)

ATLAS MC Workflow - Detector Simulation

BNL Data Center

JEDI

PanDA Server

Titan

PanDA Broker
Mover RunJobTitan GetBackfill GetJob
H (a) (3)
\ Y Y \
@_> Lustre Plzisltaeﬁlch Scl\lfe?iibler NES
Worker Node -1 m /hVorker Node Worker Node
| MPI Script | {7 ) \\6
\\-/ + + ]
H AthenamP || AthenaMP || AthenamP || Athenamp |
ood|jjoddoyodad|jjgdod
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NGE behaves like a resource:
o Exposes capabilities and

availability acquired via pilots.
Separation of concerns NGE
independent from:
o PanDA server

—

o Type of workload

000000 Application
| | 1 PIIOt AP||
Pilot Pilot VY llly vy Unit Unit User
Manager | Launcher i (,) Q (,) Scheduler | Manager | Workstation
| /77 SAGA API|
| e /S // MongoDB|
Pilot |Agent | MOM (Schedulgr||(Worker |Executor || [Worker |[Executor
Titan Node | O O O ||[Node g@ Node 9




NGE Agent: ORTE-LIB

e ORTE: Open RunTime Environment

SAGA-API ] MongoDB
o Isolated layer used by Open Resource
MPI to coordinate task layout s ~ y py N
o Runs a set of daemons over ;
compute nodes ORTE HNP
o No ALPS concurrency limits ——
] -— Compute Y Compute
e Supports multiple tasks per node ORTE Daemon Node| || ORTE Daemon Node
o Uses library calls instead of N
orterun processes \WAAN
o No central fork/exec limits WIVIVIV.

o Shared network socket
o (Hardly) no central file system
interactions



Experiments: Weak Scalability

Each AthenaMP simulates 100
events in the ATLAS detector.

One instance of AthenaMP per
Titan’s worker node; 16 Geant4
simulators per node.

The overhead grows with the
number of units but its growth is
less than linear.

Average time (seconds)

6000

4000 |-

2000 [~

400 -
200 -

8L

‘Pilot Duration —
AthenaMP Execution time =

250/250

Overhead ——1

500/500 1000/1000 2000/2000
# AthenaMP/# nodes



Experiments: Weak Scalability, Multiple Generation

8000

T Pilot Duration —

EaCh AthenaMP SimU|ateS 100 AthenaMP (5 executions) =
events in the ATLAS detector. PR Al —

. . . 6000 -
Five sequential instances of

AthenaMP per Titan’s worker node
16 Geant4 simulators per node.

Average time (séconds)

4000 |

Stress NGE components by
creating concurrency between 2000
starting and ending units. 000 |

The growth of the overhead is still 1280/256 2560/512 51201024 10240/2048

|eSS than “near # AthenaMP/# nodes



Experiments: Strong Scalability

Each AthenaMP simulates 100 o  AthenaMP curation per pode mmmm |
. Overhead ——
events in the ATLAS detector.

Each pilot is bounded with 2048
units.

)

BOOD |- SRR

Smaller the pilot size, larger the
number of sequential AthenaMP
instances that are run by the pilot.

4000 |-

Average time (seconds)

2000 |-

1000 |-

The overhead remains constant 200 |

while the pilot duration decreases. 2048/256 2048/512 20481024  2048/2048

# AthenaMP/# nodes



& ACS Publcations

C3-endo

NCI-DOE Collaboration Paving Way for Large-
Scale Computational Cancer Science
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Imagine the concentrated power of more than
one million laptops working to screen a tumor
sample from a patient against thousands of
drugs and millions of drug combinations. At the
end of this screening process, this mega-
computer would help to identify a specific
treatment with the greatest potential to combat
that patient's cancer.

NCI scientists, in collaboration with

colleagues with the Department of Energy (DOE)
2 (ECI) and the
ting Initiative (NSCI),
have been hard at work for the past 14 months
developing a plan to use this type of large-scale
computing to influence cancer science and,

e Compu

National Strategic Com

The Titan supercomputer at the U.S.
Oak Ridge National Laboratory in
Tennessee will be one of several
supercomputers used in the NCI-DoE
National Strategic Computing
Initative

Credit: Oak Ridge National Laboratory, US.
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Initiative.

Credit: Oak Ridge National Laboratory, U.S.




New type of HTC: Bio-MD Simulations (BMS)

Convergence: Decompose a traditional HPC
problem into an HTC problem!

Larger biological systems

o Typically solved by weak scaling
Long time scale problem

o Typically solved by strong scaling

Gap between weak and strong scaling
capabilities will grow with “New” Moore’s Law.

Need advances in Algorithms to address this gap
o Scaling challenges are more than
single-partition strong and weak scaling

{A)

Backbone RMSD from native

-
Simulated time (ms)

BPTI, 1ms MD ~3 months on Anton (Shaw
et al, Science 2010)

Information
loss via
dimensional
reductlon

-) k- (2

"""" / A‘!O 5 .h ’{\'




The Power of Many: Ensemble Methods

Many sampling problems formulated as
ensemble methods/algorithms

Ensemble members often interact.
o Not a “bag-of-tasks” abstraction.
o Replica-exchange, Adaptive Markov
State Models, Adaptive biasing...

Different degrees and levels of coupling
between ensembles members

A HTC problem on HPC, but traditionally
HPC optimized for single large job(s)!
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. Parallelism:  Communication

Ensemble coupling Sensitivity:

Tight coupling between simulations 10,000%
100's
Multi-node parallelism
within simulation 100’ A
Within-node parallelism )
(SIMD/SIMT) 105



RADICAL-Cybertools: Ensemble Toolkit (EnTK)

e Ensemble-Member = task = Execution Unit

©)

©)

Multi-node, sub-node, MPIl/non-MPI...
Simulation, Analysis, ..

e AIMES Execution Model

©)

©)

Support for heterogeneous tasks
Adaptive Workload: Tasks and/or relations

between tasks changes, or unknown a priori.

e Multiple dimensions of scalability:

O O O O

Concurrency: O(10K) tasks

Task size: O(1)-O(1,000) cores
Launch: O(100+) tasks per second
Task duration: O(1)-O(10,000) seconds

Replica Expanded Adaptive Application
Exchange Ensemble MSM pphicatio
Ensemble Toolkit API
Ensemble Toolkit
Application }- - - - »{ Execution | __ [Resource || Middleware
Manager Manager Manager
A I A
. v T
: Runtime '
system :
S 1
. 1 1 1
=R R l 1
| I v I
Resource A Resource B Resource C
Resources
- -»Workload --» Resource » Resource . Intermediate
information bound tasks results
3500 Executlon tlmes of gromacs S|mulat|ons at dynamlcally computed core counts
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Many Gromacs on Titan: Close to linear scaling

4200 F
4000 |
3800
3600
3400
3200
3000
2800
2600
2400
2200
2000
1800 |
1600 |
1400 |
1200 |
1000 |

800 |

600 |

400

200 |

1400

Gromacs Execution time SN |
Pilot Duration S |
Overhead B

T
Gromacs Execution time I
Pilot Duration

Overhead
1200 q

1000

800

600 -

Average time (seconds)
Average time (seconds)

400 |

200 r

512/8 512/18 512/32 0
# Gromacs single thread simulation/# nodes 128/8 256716 s12/32
# Gromacs single thread simulation/# nodes

e Almost perfect scaling for O(1000)
e Ongoing work to support O(1000)-O(10,000) Gromacs currently.
e Need is for O(100,000). Challenges at multiple levels.



Experiments: ORTE-LIB

Core Utilization (%)

100

20

1024
2048
4096
8192
Optimal

21 22 28 24 25 26
Unit Duration (s)

il
~

28 29

SAGA-API 4 MongoDB
Resource

\ Login v MOM

qsub Node Agent Node

v
ORTE HNP
/
<«—  Compute v Compute
ORTE Daemon Node ORTE Daemon Node




Challenges of O(100K+) Concurrent Tasks

Information management!

Agent communication layer (ZMQ) has =~ 5A¢AA" ﬁ MongoDB
.. Resource
limited throughput 1 Logn | T
o bulk messages gsub toe Agent| Mg
o separate message channels OLTE e
o code optimization
Agent scheduler (node placement) = V Fm—
. ORTE Daemon Node ORTE Daemon Node
scale well with number of cores

o bulk operations m | m

o Dbetter scheduling algorithms F Y X N F Y X N
o code optimization ANVANA W
Collecting complete jobs is just as hard
as spawning new ones




Summary:

e PanDA deployment of Titan shows the potential of D-HTC at unprecedented
scale and for production workload.

e NGE enables the generalization and optimization of PanDA deployment on the
based of a unified conceptual framework.

e Traditional HTC and HPC distinctions are a by-product of specific
cyberinfrastructure implementations; discussions around software is misleading!

e Demonstrate how abstractions, execution models and multi-level support unify
HTC, D-HTC, HT-HPC and HPC under the same conceptual framework enabling:
o Design and development of general-purpose middleware.
o Management of workload and resource heterogeneity and dynamism
o Analytical understanding of workload, middleware, and resource behavior.



